Induction of a sentiment dictionary for financial analyst communication: a data-driven approach balancing machine learning and human intuition
نویسندگان
چکیده
While sentiment dictionaries are easy to apply and provide reproducible results, they often exhibit inferior classification performance compared machine learning approaches trained for specific application domains. Nevertheless, both typically require manual data analysis. This paper develops a domain-specific dictionary using regularised linear models drawing from textual reports of financial analysts. The first evaluation step demonstrates that the developed analyst can explain cumulative abnormal stock returns related earnings events more accurately other finance-related classifiers. In second step, manually annotated sentiment. is accurate than dictionary-based approaches, although it cannot compete with pre-trained deep classifier. we show proposed approach suited texts analysts, be applied use cases. realises context specificity while reducing extensive
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولSentiment Analysis of Social Networking Data Using Categorized Dictionary
Sentiment analysis is the process of analyzing a person’s perception or belief about a particular subject matter. However, finding correct opinion or interest from multi-facet sentiment data is a tedious task. In this paper, a method to improve the sentiment accuracy by utilizing the concept of categorized dictionary for sentiment classification and analysis is proposed. A categorized dictiona...
متن کاملFinancial Sentiment Analysis Using Machine Learning Techniques
The rise of web content has presented a great opportunity to extract indicators of investor moods directly from news and social media. Gauging this sentiment or general prevailing attitude of investors may simplify the analysis of large, unstructured textual datasets and help anticipate price developments in the market. There are several challenges in developing a scalable and effective framewo...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of business analytics
سال: 2021
ISSN: ['2573-2358', '2573-234X']
DOI: https://doi.org/10.1080/2573234x.2021.1955022